From 1 - 10 / 49
  • The Secondary Coastal Sediment Compartment data set represents a sub-regional-scale (1:100 000 - 1:25 000) compartmentalisation of the Australian coastal zone into spatial units within (and between) which sediment movement processes are considered to be significant at scales relevant to coastal management. The Primary and accompanying Secondary Coastal Sediment Compartment data sets were created by a panel of coastal science experts who developed a series of broader scale data sets (Coastal Realms, Regions and Divisions) in order to hierarchically subdivide the coastal zone on the basis of key environmental attributes. Once the regional (1:250 000) scale was reached expert knowledge of coastal geomorphology and processes was used to further refine the sub-division and create both the Primary and Secondary Sediment Compartment data sets. Environmental factors determining the occurrence and extents of these compartments include major geological structures, major geomorphic process boundaries, orientation of the coastline and recurring patterns of landform and geology - these attributes are given in priority order below. 1 - Gross lithological/geological changes (e.g. transition from sedimentary to igneous rocks). 2 - Geomorphic (topographic) features characterising a compartment boundary (often bedrock-controlled) (e.g. peninsulas, headlands, cliffs). 3 - Dominant landform types (e.g. large cuspate foreland, tombolos and extensive sandy beaches versus headland-bound pocket beaches). 4 - Changes in the orientation (aspect) of the shoreline.

  • This job is part of the Town capture program as prioritized by the SES

  • These datasets cover all of Gold Coast City and are part of the 2009 South East Queensland LiDAR capture project. This project, undertaken by AAM Hatch Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape Purpose: To provide highly accurate elevation data for use in risk assessment, the management of natural disasters, infrastructure planning, developing strategies to support climate change, topographic mapping and modelling. Environment description: Language: eng Character set: unknown

  • This job was part of the Coastal capture program. It captures from the 10m contour interval to the coastline in the east. To the north is the Kiama job and the Ulladulla job to the south.

  • Kakadu_2004_ortho_DEM

  • These datasets cover approximately 3500 sq km in the central sector of the Gladstone Regional Council and are part of the 2009 Capricorn Coast LiDAR capture project. This project, undertaken by Fugro Spatial Solutions Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 2 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape

  • These datasets cover all of Ipswich City and are part of the 2009 South East Queensland LiDAR capture project. This project, undertaken by AAM Hatch Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape

  • These datasets cover approximately 247 sq km in the southern section of the Townsville City Council and are part of the 2011 Lower Burdekin LiDAR capture project. This project, undertaken by Fugro Spatial Solutions Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.25 metre contours in ESRI Shape

  • These datasets cover approximately 2250 sq km in the central sector of the Cassowary Coast Regional Council and over all of Dunk and Hinchinbrook Islands and are part of the 2009 Tropical Coast LiDAR capture project. This project, undertaken by Fugro Spatial Solutions Pty Ltd on behalf of the Queensland Government captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 2 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground, non-ground or building) - ASCII xyz dataset of LiDAR ground returns - ASCII xyz dataset of LiDAR ground returns - 1 metre Digital Elevation Model (DEM) in ASCII xyz - 1 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 1 metre Digital Elevation Model (DEM) in ESRI binary grid - 0.25 metre contours in ESRI Shape

  • These datasets covering all of the Logan City Council were captured under the 2008 Logan LiDAR capture project. This project, undertaken by Schlencker Mapping Pty Ltd on behalf of the Logan City Council captured highly accurate elevation data using LiDAR technology. Available dataset formats (in 1 kilometre tiles) are: - Classified las (LiDAR Data Exchange Format where strikes are classified as ground and non-ground) - 5 metre Digital Elevation Model (DEM) in ASCII xyz - 5 metre Digital Elevation Model (DEM) in ESRI ASCII grid - 0.5 metre contours in ESRI Shape Purpose: To provide highly accurate elevation data for use in risk assessment, the management of natural disasters, infrastructure planning, developing strategies to support climate change, topographic mapping and modelling.